3,586 research outputs found

    Thermal analysis comparison between two random glass fibre reinforced thermoplastic matrix composites bonded by adhesives using microwaves: preliminary results

    Get PDF
    [Abstract]: This paper compares the thermal analysis of two types of random glass fibre reinforced thermoplastic matrix composites joined by adhesives using microwave energy. Fixed frequency, 2.45 GHz, microwave facility is used to join thirty three percent by weight random glass fibre reinforced polystyrene composite [PS/GF (33%)] and thirty three percent by weight random glass fibre reinforced low density polyethylene composite [LDPE/GF (33%)]. The facility used is shown in Figure 1. With a given power level, the composites were exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive. The heat distribution of the samples of the two types of composites was analysed and compared. The relationship between the heat distribution and the lap shear strength of the samples was also compared and discussed

    Tunable coupling to a mechanical oscillator circuit using a coherent feedback network

    Full text link
    We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator coupled to one of the devices. The network features an electromechanical device and a tunable controller that coherently receives, processes and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10410^4 times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network-level of modular, quantum electromagnetic devices.Comment: 11 pages, 6 figures, final published versio

    An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    Get PDF
    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures

    Decoherence of a Josephson qubit due to coupling to two level systems

    Full text link
    Noise and decoherence are major obstacles to the implementation of Josephson junction qubits in quantum computing. Recent experiments suggest that two level systems (TLS) in the oxide tunnel barrier are a source of decoherence. We explore two decoherence mechanisms in which these two level systems lead to the decay of Rabi oscillations that result when Josephson junction qubits are subjected to strong microwave driving. (A) We consider a Josephson qubit coupled resonantly to a two level system, i.e., the qubit and TLS have equal energy splittings. As a result of this resonant interaction, the occupation probability of the excited state of the qubit exhibits beating. Decoherence of the qubit results when the two level system decays from its excited state by emitting a phonon. (B) Fluctuations of the two level systems in the oxide barrier produce fluctuations and 1/f noise in the Josephson junction critical current I_o. This in turn leads to fluctuations in the qubit energy splitting that degrades the qubit coherence. We compare our results with experiments on Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure

    Remarks on Renormalization of Black Hole Entropy

    Full text link
    We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure

    Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    Full text link
    On the basis of a new ab initio, all-electron response scheme, formulated within time-dependent density-functional theory, we solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d-symmetry. While the effect of many-particle correlations is small, the correlations built into the "final-state" -d-bands play an important, and novel, role ---which is related to the phase-space complexity associated with these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik
    • …
    corecore